Banner advert for the 2020 ADBA and World Biogas Assoc. Exhibition.
There's no Net Zero without Biogas: ending waste, delivering the circular economy, tackling the climate crisis.
Image of a large Cambi Anaerobic Digestion Plant

Anaerobic Digestion Plants

Anaerobic digestion plants are simply the process facilities in which anaerobic digestion takes place. When people talk of anaerobic digestion plants (AD Plants) though they are usually referring to commercial scale Anaerobic Digestion Facilities. The smaller “low technology” house-and-community food waste type digesters popular in the developing nations, are usually referred to as biogas digesters.

What Happens in an AD Plant?

In an anaerobic digestion plant normally occurring micro-organisms digest the biomass, which results in an output of a methane-rich gas (biogas) that can be made use of to generate sustainable heat and power. This tends to reduce fossil fuel usage. It also lowers greenhouse gas emissions. What is left over after the process is compete is a material (digestate) rich in nutrients, so it can be used as a fertiliser.

What are AD Plants Fed With?

Several kinds of feedstock are appropriate for use in anaerobic digestion plants. These include food waste, slurry as well as manure, in addition to plants and plant residues. Nevertheless, woody biomass can not be utilised in these plants since the micro-organisms can ‘t break down the lignin. It is the lignin that gives wood its woodiness, and makes wood hang around a long while because it is hard to digest.

 

Image of Anaerobic Digestion Plants

A typical commercial AD Plant processes about 10,00

Naturally occurring micro-organisms digest the biomass, which releases a methane-rich gas (biogas) that can be used to generate renewable heat and power; this helps cut fossil fuel use and reduce greenhouse gas emissions. The remaining material (digestate) is rich in nutrients, so it can be used as a fertiliser.

The average commercial AD plant ranges in throughput tonnages, from 5,000 to 30,000 tonnes annually of organic feedstock.

The most common form of CSTR AD plant comprises:

  1. A reception facility where re incoming wastes are offloaded checked for the presence of impurities or “contraries” and fed into the plant and AD reactor vessel(s) material processing and supply system
  2. Pre-treatment facilities as necessary to the feed materials before entering the AD reactor vessel(s) with pre-treatment being provided for such purposes as removing all recyclables, cutting up and mixing, and optimising the reactor feed materials for maximum biogas production
  3. The reaction stage in which the “fermentation” takes place in single or multiple tanks, in series or in parallel circuits
  4. The post-treatment stage where both solid and liquid phase outputs will be further treated to suit the specified provision of a product wherever possible. In most cases there will be a final maturation stage  where the solid fibrous “compost” in the output will be allowed to aerobically decompose further
  5. Ancillary structures such as a biogas storage facility (typically round or oval in shape and distinctive looking), storage tanks to hold liquid digestate  etc.
  6. Equipment for generating electricity from the biogas and this is usually a large reciprocating engine which utilizes the methane gas as its fuel.
  7. A treatment facility for any excess liquid digestate if this is unsuitable for sale. Where such a facility is needed it will typically be an oxidation stage reactor where air is passed through the water in sequencing batch reactors or a reverse osmosis unit
  8. Related buidings etc
  9. Site access roads, drainage and electric connection to the local grid, plus any other services. installations.

The Agri-Food and Biosciences Institute (UK) has a good page about Anaerobic digestion plants in agriculture, and we quote their statement:

Anaerobic Digestion Plants for Agriculture

Anaerobic digestion (AD) plants can be on-farm units, designed to deal with manures and other organic materials produced at farm level. Alternatively, AD plants can be designed as centralised units to deal with products from a number of farms, along with co-digestion of organic materials from other industries…

and,

The most appropriate way… to realise this energy potential is through centralised anaerobic digestion (CAD) schemes (Frost, 2005). In addition to energy production, there is considerable potential for CAD to assist in centrally managing the distribution of plant nutrients in manures, together with minimising bio-security risks (pathogen kill) .. . Whilst CAD has potentially a major role… and offers the most appropriate and immediate way forward, there is also significant potential for on-farm AD.

Still on the same page they describe the increasingly popular idea of the centralised Anaerobic Digester:

Centralised anaerobic digestion

Typical agriculturally based centralised AD (CAD) plants use farm products (livestock manures and crops) as the main feedstocks, as well as other organic material from, for example, food processing. Co-digestion can provide an additional source of income through gate fees and can improve the yield of biogas per unit of feedstock input. CAD plants can be thermophilic or mesophilic. Compared to typical on-farm plants, CAD plants are larger (0.1-1.0 MW electricity), give economies of scale and offer better market opportunities for heat (for local industry and/or district heating) and fibre production. CAD schemes can involve a number of farms within a radius of about 10 km from the plant. All agriculturally based CAD schemes distribute digestate back to agricultural land, normally that of the supplying farms. Raw slurry and digestate are rich in plant nutrients (nitrogen, phosphorus and potassium). Digestate must be applied to agricultural land in accordance with crop requirements for plant nutrients. Nutrient management is a major issue for consideration when determining the feasibility of any AD scheme. CAD schemes have major potential to assist in managing and redistributing plant nutrients in slurry. When redistributing digestate to farms it is very important to ensure bio-security. All CAD schemes should include sterilisation of material prior to redistribution.

So there you have it, and this page is hopefully all you needed in order to understand what an Anaerobic Digestion Plant is.


More About Anaerobic Digestion Plants

Plants can be generally be categorised as:

  • Agricultural — plants that make use of mainly farming feedstock such as manures, slurries, crops and plant deposits.

Or,

  • Waste – plants that utilize primarily local, industrial and also hazardous waste streams as feedstock.

Each is, after that, categorised by the end-use of the biogas:

  • Heat and/or Power (CHP) — an anaerobic digester generating biogas which is burned on-site to generate heating hot water, power or both.
  • Biomethane to Grid (BtG)— an anaerobic digester generating and updating biogas, to derive biomethane for shot into the nationwide gas grid

How much energy could anaerobic digestion generate in the UK?

AD could generate 10-20 TWh of heat and power per year by 2020. To put this in context, the United Kingdom's largest power station Drax sold 27.1 TWh of electricity in 2012. To put it another way AD could represent 3.8-7.5% of the renewable energy we estimate will be required in 2020. via biogasinfo

What are the Disbenefits of AD?

AD plants are 24-hour operations and because of this they need to be fed on a regular basis. Pumps and other machinery also require to be maintained to guarantee production is not disrupted.

There can be sound made by these plants especially of vehicles reversing. They can also be dirty, as well as there could possibly be leakages.

The potential for smells also exists and also environmental contamination from accidental emissions of digestate fluids.

Nonetheless, these issues are all easily avoided if managed to comply with ecological regulations, so will not occur, or if they do the plant operator will be prosecuted.

The fluid component of the digestate consists of nitrates and various other chemicals which should not be released to water but which can in most locations safely be spread out on the land or refined to make  a more “in-demand fuel”.

Design Configurations

Anaerobic digestion plants can be designed and engineered to operate using a number of different configurations. These can be categorized into:

  • batch vs. continuous process mode,
  • mesophilic vs. thermophilic temperature conditions,
  • high vs. low portion of solids, and
  • single stage vs. multistage processes.

Continuous processes require more complex design, but still, it may be more economical than batch process That's because a batch process requires more initial building money and a larger volume of the digesters (spread across several batches) to handle the same amount of waste as a continuous process digester. via Wikipedia


Article first published in December 2011.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

This site uses Akismet to reduce spam. Learn how your comment data is processed.

0 Shares
Tweet
Share
Pin
Share